Publications
×
Publications
[1]
Jonathan Kulwatno,
Jamie Gearhart,
Xiangyu Gong,
Nora Herzog,
Matthew Getzin,
Mihaela Skobe,
and
Kristen L. Mills,
"Growth of tumor emboli within a vessel model reveals dependence on the magnitude of mechanical constraint."
Integrative Biology 13(1):
1-16,
2021
[2]
Jonathan Kulwatno,
Xiangyu Gong,
Rebecca DeVaux,
Jason I Herschkowitz,
and
Kristen L Mills,
"An Organotypic Mammary Duct Model Capturing Matrix Mechanics-Dependent Ductal Carcinoma In Situ Progression."
Tissue Engineering Part A. 27(7-8):
454-466,
2021
[3]
Xiangyu Gong,
Jonathan Kulwatno,
and
K.L. Mills,
"Rapid fabrication of collagen bundles mimicking tumor-associated collagen architectures."
Acta Biomaterialia 108:
128–141,
2020
[4]
Ashok Williams*,
James F Nowak*,
Rachel Dass,
Johnson Samuel,
and
K.L. Mills,
"Towards morphologically relevant extracellular matrix in vitro models: 3D fiber reinforced hydrogels."
Front. Physiol. 9:
966,
2018
[5]
Xiangyu Gong,
and
Kristen L. Mills,
"Large-scale patterning of single cells and cell clusters in hydrogels."
Scientific Reports 8(1):
3849,
2018
[6]
Clayson C. Spackman,
James F. Nowak,
Kristen L. Mills,
and
Johnson Samuel,
"A Cohesive Zone Model for the Stamping Process Encountered During Three-Dimensional Printing of Fiber-Reinforced Soft Composites."
J. Manuf. Sci. Eng. 140(1):
4616,
2018
[7]
K.L. Mills,
R. Kemkemer,
S. Rudraraju,
and
K. Garikipati,
"Elastic Free Energy Drives the Shape of Prevascular Solid Tumors."
PLOS ONE 9(7):
e103245,
2014
[8]
C. Moraes,
B.C. Kim,
X. Zhu,
K.L. Mills,
A.R. Dixon,
M.D. Thouless,
and
S. Takayama,
"Defined topologically-complex protein matrices to manipulate cell shape via three-dimensional fiber-like patters."
Lab on a Chip 14(13):
2191–2201,
2014
[9]
Rudraraju S.,
Mills K.L.,
Kemkemer R.,
and
Garikipati K.,
"Multiphysics Modeling of Reactions, Mass Transport and Mechanics of Tumor Growth."
In: Holzapfel G.,
Kuhl E. (Eds)
Computer Models in Biomechanics. Springer, Dordrecht
2013
[10]
K.L. Mills,
K. Garikipati,
and
R. Kemkemer,
"Experimental characterization of tumor spheroids for studies of the energetics of tumor growth."
International Journal of Materials Research 102(7):
889-895,
2011
[11]
K.L. Mills,
D. Huh,
S. Takayama,
and
M.D. Thouless,
"Instantaneous fabrication of arrays of normally closed, adjustable, and reversible nanochannels by tunnel cracking."
Lab on a Chip 10(12):
1627-1630,
2010
[12]
H. Narayanan,
S. N. Verner,
K.L. Mills,
R. Kemkemer,
and
K. Garikipati,
"In silico estimates of the free energy rates in growing tumor spheroids."
Journal of Physics: Condensed Matter, Special Issue on Cell-Substrate Interactions 22(19):
194122,
2010
[13]
T. Uchida*,
K.L. Mills*,
W. Roh,
Y.C. Tung,
A.L. Garner,
K. Koide,
M.D. Thouless,
and
S. Takayama,
"External compression-induced fracture patterning on the surface of polydimethylsiloxane cubes and microspheres."
Langmuir 25(5):
3102–3107,
2009
[14]
K.L. Mills,
X. Zhu,
S. Takayama,
and
M.D. Thouless,
"The mechanical properties of a surface-modified layer on polydimethylsiloxane."
Journal of Materials Research 23(1):
37–48,
2008
[15]
D. Huh,
K.L. Mills,
X. Zhu,
M.A. Burns,
M.D. Thouless,
and
S. Takayama,
"Tuneable elastomeric nanochannels for nanofluidic manipulation."
Nature Materials 6(6):
424–428,
2007
[16]
X. Zhu,
K.L. Mills,
P. R. Peters,
J.H. Bahng,
E.H. Liu,
J. Shim,
K. Naruse,
M.E. Csete,
M.D. Thouless,
and
S. Takayama,
"Fabrication of reconfigurable protein matrices by cracking."
Nature Materials 4(5):
403–406,
2005
© 2015 Kristen Mills. Statements.